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Effective dimensions and percolation in hierarchically structured scale-free networks
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We introduce appropriate definitions of dimensions in order to characterize the fractal properties of complex
networks. We compute these dimensions in a hierarchically structured network of particular interest. In spite of
the nontrivial character of this network that displays scale-free connectivity among other features, it turns out
to be approximately one dimensional. The dimensional characterization is in agreement with the results on
statistics of site percolation and other dynamical processes implemented on such a network.
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I. INTRODUCTION

The most basic characteristic of any geometric structur
perhaps its dimensionality. The notion of dimension is in
itively associated with the amount of data necessary to lo
a point on the structure, but the difficulties to formalize th
association have been known for more than a century@1#. A
distinction should be made between definitions of dim
sions based on topology and those based on measures
distances or metrics. While both types are important in d
ferent fields of science, the latter is very relevant in the
scription of fractal structures@2# and in dynamical system
theory @3#.

Complex networks are a category of geometrical str
tures that have been thoroughly investigated in the last
years@4#. However, the possible characterization of comp
networks in terms of suitably defined dimensions rema
practically unexplored, with the exception of a few cases
networks constructed from or embedded in regular Euclid
lattices@5–7#. This characterization should not only improv
understanding of the different geometrical properties of v
ous networks, but also clarify its impact on the dynamics
processes that might take place on them—percolation,
ease propagation, information transmission, etc. Fracta
mensions, for example, might be useful to elucidate the c
nections between network topology correlations a
dynamics which, apart from some isolated results@8#, remain
essentially not understood. Issues such as why two netw
with the same degree distribution but different wiring deta
show different dynamical properties@9# are good candidate
to be tackled with the tools of fractal geometry.

The aim of this paper is to introduce a set of quantiti
namely, thenetwork dimensionswith the purpose of provid-
ing a finer classification of networks with similar topologic
structure. As an application, we analyze a particular type
structured scale-free network@10#. We show that some of its
properties can be understood from the fact that it beha
close to one dimensional with appropriately defined dim
sions.

II. DEFINITIONS

A network is a set of lines, the links, connecting poin
named nodes or sites. Thus, topologically, any network
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one-dimensional object that by virtue of Whitney’s theore
@1# can always be embedded in the three-dimensional Euc
ian space. However, this topological dimension does
carry information related to the many interesting propert
of networks. In a regular square lattice, for example,
number of sites within a given distance from a particu
node asymptotically grows as the square of this distan
This example suggests that a metric definition of dimens
could highlight better the two-dimensional character of t
lattice than the topological dimension does.

A hierarchy of definitions for the dimension of a set th
are associated to the properties of measures defined on
set was long ago introduced by Renyi@11#, and have since
been used with success in several fields. These dimens
were particularly helpful for the description of several na
ral fractal objects as well as for the characterization of c
otic trajectories in dynamical systems theory. In the stand
definition the set to be characterized is first covered wit
numberN(e) of boxes of sizee. Let m i be the measure
associated to the boxi. Then, the spectrum of dimensionsD̃q

is defined by the scaling of the quantityG(q,e)[( i 51
N(e)m i

q

for small e:

D̃q5 lim
e→0

1

q21

ln G~q,e!

ln e
. ~1!

D̃0 , D̃1, andD̃2 are the so-called capacity, information, an
correlation dimensions, respectively. It can be shown t
D̃q>D̃q8 if q,q8. D̃1 in Eq. ~1! can in principle depend on
the particular set of boxes covering the set which implies t
an extremum requirement similar to that in the original de
nition by Haussdorf@3# may be technically needed. Here w
will postpone the consideration of these refinements to s
plify implementation of practical numerical algorithms.

One natural way to define a measure on a network is
assign the unit of mass to each node. In this case, the m
sure of a portion of the network is the number of nodes t
it contains. It is less easy to define a ‘‘covering’’ of the ne
work with boxes because it requires ana priori knowledge
of the Euclidean space in which the network can be emb
ded. Since many networks are defined without referenc
any embedding in an Euclidean space, alternative definiti
based on intrinsic distances are necessary. In our conte
©2003 The American Physical Society02-1
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convenientdistancedist(X,Y) between two nodesX andY is
the minimum number of links contained by a path conne
ing nodesX andY. This is a well-defined metric sometime
called chemical distance@12#. Distinctively from Euclidian
and other distances commonly used to define dimensi
this one is integer valued. As a consequence, the sca
properties should be referred to the large distances limit
stead of the opposite one usually considered.

A definition of the dimensions spectrumDq , equivalent
to Renyi’s one, Eq.~1!, in those systems where both a
applicable, is based on the scaling of theq-correlation func-
tion C(q,L) @13#. In a network of N points ~or nodes!,
C(q,L) is the number ofq-tuplets of points in the network
with mutual distances smaller thanL, and divided byNq. We
then have

Dq5 lim
L→`

1

q21

ln C~q,L !

ln L
. ~2!

The advantage of using Eq.~2! instead of Eq.~1! with the
Euclidean distance replaced by the chemical one is that
~2! does not require any box covering and therefore na
priori knowledge of the Euclidean embedding is necessa

Finally, another equivalent definition@14# with easy prac-
tical implementation is that based on the scaling of the nu
ber of neighbors within a given distanceL of a given siteXi :
mL(Xi)[(N21)21( j Þ iQ„L2dist(Xi2Xj )…, whereQ(x) is
the Heaviside step function.Dq is determined from moment
of mL(Xi):

Dq5 lim
L→`

1

q21

ln^mL~X!q21&X

ln L
, ~3!

where the averages^•&X are taken over all the nodesX in the
network. Application of l’Hôpital’s rule gives

D15 lim
L→`

K ln mL~X!

ln L L
X

. ~4!

Other equivalent definitions, based on the scaling of near
neighbor distances, or fixed mass methods@15#, could be
also implemented on networks, but we find definition~3! to
be appropriate for our purposes. In cases in which an Euc
ean distance can be defined, it can also be used in Eqs.~2! or
~3! to define quantities that would be denoted by lower-c
letters,dq , to distinguish them from the case in which th
chemical distance is used. Thedq are essentially the classica
fractal dimensions, but associated to the large-distance s
ing.

It is instructive to calculate the dimension values for se
eral simple networks. For example, for regular triangu
square, etc. lattices, it is easy to check thatDq52 ; q. Dq
53 for the classical three-dimensional lattices~e.g. cubic,
. . . ), etc. For a network with astar topology ~i.e., a large
number N of nodes connected to a central hub!, Dq5`,
since all the nodes are at a finite distance~1 or 2! of each
other even in the limitN→`. The same happens for ran
domly wired networks. The usual implementation of t
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small-worldproperty, i.e., the introduction of links connec
ing arbitrarily remote nodes, leads also toDq→`. This has
been explicitly demonstrated for a small-world model in R
@5#, where effective dimensions essentially equivalent toD2
are introduced and calculated as a function of spatial sca
At large scales (L→` in our notation! a divergent quantity
is obtained. Thus, it is useful to think of some of the char
teristics of small worlds or random graphs as being ass
ated to an infinite dimensionality. From the expressions
Ref. @16# one can also show thatDq5` for the structures
presented there.

After considering these examples, one may wonde
there is any nonregular complex network structure charac
ized by finite dimensions. We will show below that the a
swer is positive and that this finite dimensionality has d
namical consequences that distinguish processes occu
on these networks from the infinite-dimensional ones. Bef
that, we can mention that networks of arbitrary dimension
ity can be constructed by following the rules used to rec
sively construct fractals of given dimension. For example
classical fractal is the Sierpin´sky gasket@2#, constructed,
generation after generation, by inscribing triangles inside
triangles originated in the previous generation. As here
characterize large-scale features, it is better to consider
construction as the recursive joining of triangles to constr
a larger and larger object@see Fig. 1~a!#. Since the resulting
fractal structure is embedded in the plane, one can use
Euclidean distance and find as usual thatdq5d05 ln 3/ln 2
; q. If we use instead the chemical distance, with the lin
in Fig. 1~a! identified as links of unit chemical length, w
have alsoDq5dq5 ln 3/ln 2 ; q. The situation is rather dif-
ferent for nonbranchingfractal constructions. For example
the classical Koch curve@Fig. 1~b!# hasdq5 ln 4/ln 3. But in
terms of the chemical metrics, dist(X,Y), the distance be-
tween two points is always the number of nodes in betw
along the curve, so that we haveDq51 ; q, as for any other
nonbranching structure. In general, for networks construc
from the node and link structure of a classical fractal obje
one expectsDq<dq because the Euclidian distance is in ge
eral shorter than the chemical one. This generally lead
finite chemical dimensions. In other constructions, the
equality may be reversed@6#. This last reference also pro
vides an additional example of a network with finite dime
sionality ~in this case embedded in a Euclidean lattice!.

More interesting is the fact that one can construct n
works with finite dimensionality without any reference
fractal objects nor to Euclidean embedding spaces. We s

FIG. 1. ~a! The three initial steps in the construction of an in
nite network of the Sierpin´sky gasket type. The unit of length i
kept to one link at each step of the construction, so that the rele
scaling is at large distances.~b! The two initial steps in the con-
struction of the nonbranching Koch-like network.
2-2
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here that the networks introduced by Klemm and Eguı´luz
@10# are of such kind. This helps to understand the disti
behavior of these structures as compared to others consid
in the literature.

III. DIMENSION ANALYSIS OF THE KLEMM-EGUI ´LUZ
„KE … NETWORK

We have performed extensive numerical studies on
KE structured scale-free networks@10#. The iterative proce-
dure to generate them departs fromm active, fully connected
nodes. In each step, first a new active node is added
attaches a link to each of the otherm active nodes. Then on
of the active nodes is deactivated according to the probab
P(k)}k21, wherek is the degree of the node. This alg
rithm generates networks with a power law degree distri
tion P(k);k2g, whereg.321/m @17#. In Fig. 2 we plot
the average normalized number of nodes at distanceL,
^mL(Xi)& for different system sizes, withm53. By using
Eq. ~3! we find that the best fit gives the correlation dime
sion D250.92. In Fig. 3 we plot the average slop
^ ln mL(Xi)/ln L& for different system sizes. From Eq.~4! the
plateau regime indicates an average value of the informa
dimensionD150.97. Finally from Fig. 4, the best fit gives
via Eq. ~3!, the capacity dimensionD051.0.

The differences in the values ofDq for different q are a
consequence of the inhomogeneity of the network. E
though this is an interesting point, here we focus on the
that the dimension estimates are finite and close to 1. T
confirms the conclusions in Ref.@10,18#, obtained from the
scaling of the network’s diameter, and opens the way
future characterization of the whole spectrum of dimensi
in this and other network models. In the sense of the defi
tions introduced above, the network behaves very clos
one dimensional. Note thata priori there has not been a
obvious Euclidian space containing the structure from wh
to calculate the dimensionsdq . In the following we consider
dynamical processes occurring in KE networks and interp
them in the light of the dimension study.
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X

FIG. 2. Average number of nodes at distanceL from a given
node. System sizes 10 000, 20 000, 40 000, 80 000, 160 000.
dashed line grows as;L0.92. The averages have been done over
different networks and on each 1000 different starting nodes.
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IV. SITE PERCOLATION

An important process occurring on real networks is t
propagation of information, or of diseases. If the nodes of
network are either susceptible to the disease with probab
p or immune to it with probability 12p, and the disease
propagates through the links, the maximum number of in
viduals that can be affected by an epidemic outbreak is gi
by the size of the largest connected cluster in site perc
tion, where occupation of a site means susceptibility to
disease. We have performed numerical simulations of su
process in KE networks. In Fig. 5 we show the average re
tive sizes of the connected cluster around an occupied s
for different system sizes andm53. The results indicate tha
for any system sizeN there is a~broad! transition to the
percolating state at some value of the occupation probab
pc . However it is seen thatpc→1 asN→`. Thus, the per-
colating transition occurs atpc51 in the infinite-size limit.
This is precisely the expected behavior in a one-dimensio
structure. The inset shows that the relative size of the larg
cluster scales asF„(12p)Na

…, where the exponenta de-
pends on the average connectivity of the network. T
finite-size scaling behavior is also what one finds for per

he
n
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FIG. 3. Average local ratiôln(mL)/ln L&. The plateau indicates a
valueD150.97. Symbols and averaging as in Fig. 2.
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FIG. 4. Average^ ln(mL
21)&. The dashed line corresponds to

function ;L21. Symbols and averaging as in Fig. 2.
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lation in one-dimensional regular lattices. In addition w
have found thata50.35 for m53, while a.0.21 for m
55, suggesting thata is a decreasing function of the ave
age degreêk&52m. These numbers are in good agreem
with site percolation in one-dimensional lattices with rad
of interactionz. There one can show thata5z21.

It is worth noting that this result is in contrast with th
zero percolation threshold found@19# in random scale-free

0.1 1 10 100
(1-p)N

0.35

0

0.2

0.4
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1
s

0.5 0.6 0.7 0.8 0.9 1
p

0

0.2

0.4

0.6

0.8

1
s

FIG. 5. Average relative size of the largest clusters in site per-
colation for different occupation probabilitiesp in m53 KE net-
works. The inset shows a finite-size scalings5F„(12p)N0.35

….
The average values have been obtained from 1000 percolatio
alizations in ten different networks. Network sizeN510 000
~circles!, 20 000 ~squares!, 50 000 ~triangle up!, 100 000~triangle
down!, 200 000~diamonds!.
-
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n
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05510
t

networks of the Baraba´si-Albert type @20#. For such net-
works, we have checked~for q50,1,2) that the moments
^mq& do not scale as a power law ofL, but insteadDq→` in
this case. Thus, the different behavior is consistent with
different dimensionality.

V. CONCLUSIONS

We have introduced definitions of dimensions useful
the study of complex networks. In particular, we have cal
lated the capacity, information, and correlation dimension
a type of hierarchically structured scale-free network. W
have shown that some dynamical properties of this clas
networks can be understood in the light of the dimens
analysis. One should be warned, however, that dimensio
only one of the many characteristics of complex networ
From the study of phase transitions on fractals@21# it is
known that other numbers such as connectivity or lacuna
should also be specified to fully determine the behavior
dynamic phenomena occurring on them. We expect the s
to apply to networks. Quantities such as clustering or
tweenness, together with dimensions, may play a role in
termining universality classes for processes on netwo
@22#. Finally, it would be worth to search for other comple
networks displaying finite dimension spectra. We think th
possible candidates would be those with an underly
‘‘regular’’ topology @6,23#.
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