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We introduce appropriate definitions of dimensions in order to characterize the fractal properties of complex
networks. We compute these dimensions in a hierarchically structured network of particular interest. In spite of
the nontrivial character of this network that displays scale-free connectivity among other features, it turns out
to be approximately one dimensional. The dimensional characterization is in agreement with the results on
statistics of site percolation and other dynamical processes implemented on such a network.
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[. INTRODUCTION one-dimensional object that by virtue of Whitney’s theorem
[1] can always be embedded in the three-dimensional Euclid-
The most basic characteristic of any geometric structure igan space. However, this topological dimension does not
perhaps its dimensionality. The notion of dimension is intu-carry information related to the many interesting properties
itively associated with the amount of data necessary to locatef networks. In a regular square lattice, for example, the
a point on the structure, but the difficulties to formalize thisnumber of sites within a given distance from a particular
association have been known for more than a certlfyA  node asymptotically grows as the square of this distance.
distinction should be made between definitions of dimen-This example suggests that a metric definition of dimension
sions based on topology and those based on measures aglld highlight better the two-dimensional character of the
distances or metrics. While both types are important in dif-lattice than the topological dimension does.
ferent fields of science, the latter is very relevant in the de- A hierarchy of definitions for the dimension of a set that
scription of fractal structuref2] and in dynamical systems are associated to the properties of measures defined on that
theory|[3]. set was long ago introduced by Rer{il], and have since
Complex networks are a category of geometrical strucheen used with success in several fields. These dimensions
tures that have been thoroughly investigated in the last fewvere particularly helpful for the description of several natu-
years[4]. However, the possible characterization of complexral fractal objects as well as for the characterization of cha-
networks in terms of suitably defined dimensions remainstic trajectories in dynamical systems theory. In the standard
practically unexplored, with the exception of a few cases ofdefinition the set to be characterized is first covered with a
networks constructed from or embedded in regular EuclideanumberN(e) of boxes of sizee. Let u; be the measure
lattices[5—7]. This characterization should not only improve associated to the baxThen, the spectrum of dimensioﬁ§

understanding of the different geometrical properties of varijs defined by the scaling of the quantif(q,e)=3SN¢ ud
ous networks, but also clarify its impact on the dynamics of;g; gmall B
processes that might take place on them—percolation, dis-

ease propagation, information transmission, etc. Fractal di- 5 1 InT(q,e)
mensions, for example, might be useful to elucidate the con- Dy=Ilim =1 e D
nections between network topology correlations and e0d ne

dynamics which, apart from some isolated resi8isremain
essentially not understood. Issues such as why two networks,, D, andD, are the so-called capacity, information, and
with the same degree distribution but different wiring detailscorrelation dimensions, respectively. It can be shown that
show different dynamical properti¢8] are good candidates § —f | if q<q’. Dy in Eq. (1) can in principle depend on
to be tackled with the tools of fractal geometry. the parti . : it
: X . . . particular set of boxes covering the set which implies that
The aim of this paper is to introduce a set of quantities,y extremum requirement similar to that in the original defi-
namely, thenetwork dimensionwith the purpose of provid- ision by Haussdorf3] may be technically needed. Here we
ing a finer classification of networks with similar topological 5, postpone the consideration of these refinements to sim-
structure. As an application, we analyze a particular type o[)”fy implementation of practical numerical algorithms.
structured scale-free netwofk0]. We show that some of its One natural way to define a measure on a network is to
properties can be understood from the fact that it behavegssigrl the unit of mass to each node. In this case, the mea-
close to one dimensional with appropriately defined dimenyg,,re of 4 portion of the network is the number of nodes that
slons. it contains. It is less easy to define a “covering” of the net-
work with boxes because it requires arpriori knowledge
of the Euclidean space in which the network can be embed-
ded. Since many networks are defined without referencing
A network is a set of lines, the links, connecting pointsany embedding in an Euclidean space, alternative definitions
named nodes or sites. Thus, topologically, any network is #ased on intrinsic distances are necessary. In our context, a

II. DEFINITIONS
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conveniendistancedist(X,Y) between two nodeX andY is

the minimum number of links contained by a path connect-
ing nodesX andY. This is a well-defined metric sometimes
called chemical distancg12]. Distinctively from Euclidian
and other distances commonly used to define dimensions,
this one is integer valued. As a consequence, the scaling
properties should be referred to the large distances limit in-

a)

b)
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stead of the opposite one usually considered.

A definition of the dimensions spectrub,, equivalent

q

to Renyi's one, Eq.(1), in those systems where both are

applicable, is based on the scaling of treorrelation func-
tion C(q,L) [13]. In a network of N points (or nodes,
C(q,L) is the number ofj-tuplets of points in the network
with mutual distances smaller thanand divided byN9. We
then have

.1 InC(q,L)
PomMg=1" Tt @

The advantage of using E) instead of Eq.(1) with the

FIG. 1. (a) The three initial steps in the construction of an infi-
nite network of the Sierpsky gasket type. The unit of length is
kept to one link at each step of the construction, so that the relevant
scaling is at large distanceg) The two initial steps in the con-
struction of the nonbranching Koch-like network.

small-world property, i.e., the introduction of links connect-
ing arbitrarily remote nodes, leads alsoRg—o. This has
been explicitly demonstrated for a small-world model in Ref.
[5], where effective dimensions essentially equivalenDto

are introduced and calculated as a function of spatial scales.
At large scalesl(— in our notation a divergent quantity

is obtained. Thus, it is useful to think of some of the charac-
teristics of small worlds or random graphs as being associ-

Euclidean distance replaced by the chemical one is that Egyed to an infinite dimensionality. From the expressions in
(2) does not require any box covering and thereforeano Ref. [16] one can also show th@,== for the structures
priori knowledge of the Euclidean embedding is necessary.presented there.

Finally, another equivalent definitidi4] with easy prac-

After considering these examples, one may wonder if

tical implementation is that based on the scaling of the numthere is any nonregular complex network structure character-

ber of neighbors within a given distanteof a given siteX; :
L (X)=(N—-1)"1%, ;0 (L —dist(X;—X;)), where®(x) is

the Heaviside step functio, is determined from moments

of i (X)):

1 In(u (X)9 1y
g-1 InL '

)

Dy= lim

L—o

where the averagés )y are taken over all the nodésin the
network. Application of I'Hgital’'s rule gives

o Inp(X)
o= im{FR) “

ized by finite dimensions. We will show below that the an-
swer is positive and that this finite dimensionality has dy-
namical consequences that distinguish processes occurring
on these networks from the infinite-dimensional ones. Before
that, we can mention that networks of arbitrary dimensional-
ity can be constructed by following the rules used to recur-
sively construct fractals of given dimension. For example, a
classical fractal is the Sierpsky gasket[2], constructed,
generation after generation, by inscribing triangles inside the
triangles originated in the previous generation. As here we
characterize large-scale features, it is better to consider the
construction as the recursive joining of triangles to construct
a larger and larger objegsee Fig. 1a)]. Since the resulting
fractal structure is embedded in the plane, one can use the
Euclidean distance and find as usual tHgtdy=1In3/In2

Other equivalent definitions, based on the scaling of neares¥ q. If we use instead the chemical distance, with the lines

neighbor distances, or fixed mass meth¢ds|, could be
also implemented on networks, but we find definiti@ to

in Fig. 1(a) identified as links of unit chemical length, we
have alsdD,=d,=In3/In2V q. The situation is rather dif-

be appropriate for our purposes. In cases in which an Euclidierent for nonbranchingfractal constructions. For example,

ean distance can be defined, it can also be used in(Eqst

the classical Koch curvgrig. 1(b)] hasdq=In4/In3. But in

(3) to define quantities that would be denoted by lower-casgerms of the chemical metrics, di3t(Y), the distance be-
letters,dg, to distinguish them from the case in which the tween two points is always the number of nodes in between
chemical distance is used. THg are essentially the classical along the curve, so that we hag=1V g, as for any other
fractal dimensions, but associated to the large-distance scatonbranching structure. In general, for networks constructed

ing

It is instructive to calculate the dimension values for sev

from the node and link structure of a classical fractal object,

-one expect® ;<d, because the Euclidian distance is in gen-

eral simple networks. For example, for regular triangular.eral shorter than the chemical one. This generally leads to

square, etc. lattices, it is easy to check thgt=2 V . D
=3 for the classical three-dimensional lattic@sg. cubic,
...), etc. For a network with atar topology (i.e., a large
numberN of nodes connected to a central hub =,
since all the nodes are at a finite distariteor 2) of each

finite chemical dimensions. In other constructions, the in-
equality may be reverseld]. This last reference also pro-
vides an additional example of a network with finite dimen-
sionality (in this case embedded in a Euclidean laftice

More interesting is the fact that one can construct net-

other even in the limitN—o. The same happens for ran- works with finite dimensionality without any reference to
domly wired networks. The usual implementation of thefractal objects nor to Euclidean embedding spaces. We show
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FIG. 2. Average number of nodes at distaicérom a given FIG. 3. Average local ratigIn(x,)/In L). The plateau indicates a

node. System sizes 10 000, 20 000, 40 000, 80 000, 160 000. ThaalueD;=0.97. Symbols and averaging as in Fig. 2.
dashed line grows asL%%2 The averages have been done over ten
different networks and on each 1000 different starting nodes. IV. SITE PERCOLATION

here that the networks introduced by Klemm and Egui An importan.t process occurring on real networks is the
[10] are of such kind. This helps to understand the distincPropagation of information, or of diseases. If the nodes of the

behavior of these structures as compared to others considerB§tWork are either susceptible to the disease with probability
in the literature. p or immune to it with probability +p, and the disease

propagates through the links, the maximum number of indi-
viduals that can be affected by an epidemic outbreak is given
by the size of the largest connected cluster in site percola-
tion, where occupation of a site means susceptibility to the
We have performed extensive numerical studies on théisease. We have performed numerical simulations of such a
KE structured scale-free networks0]. The iterative proce- process in KE networks. In Fig. 5 we show the average rela-
dure to generate them departs fromactive, fully connected tive sizes of the connected cluster around an occupied site
nodes. In each step, first a new active node is added arf@r different system sizes amd=3. The results indicate that
attaches a link to each of the othmractive nodes. Then one for any system sizeN there is a(broad transition to the
of the active nodes is deactivated according to the probabilitpercolating state at some value of the occupation probability
II(k)>k™ 1, wherek is the degree of the node. This algo- P.. However it is seen thagi,—1 asN—o. Thus, the per-
rithm generates networks with a power law degree distribucolating transition occurs gi,=1 in the infinite-size limit.
tion P(k)~k~?, wherey=3—1/m [17]. In Fig. 2 we plot  This is precisely the expected behavior in a one-dimensional
the average normalized number of nodes at distance structure. The inset shows that the relative size of the largest
{m (X)) for different system sizes, witm=3. By using Cluster scales a&((1—p)N“), where the exponent de-
Eg. (3) we find that the best fit gives the correlation dimen-pends on the average connectivity of the network. This
sion D,=0.92. In Fig. 3 we plot the average slope finite-size scaling behavior is also what one finds for perco-
(In w (X)/InL) for different system sizes. From E@) the
plateau regime indicates an average value of the information ;¢
dimensionD;=0.97. Finally from Fig. 4, the best fit gives,

I1l. DIMENSION ANALYSIS OF THE KLEMM-EGUI  LUZ
(KE) NETWORK

via Eq. (3), the capacity dimensioby=1.0. . |
The differences in the values &, for differentq are a 10
consequence of the inhomogeneity of the network. Even e

though this is an interesting point, here we focus on the fact <10
that the dimension estimates are finite and close to 1. This's
confirms the conclusions in R€f10,18, obtained from the =
scaling of the network’s diameter, and opens the way for v 1o
future characterization of the whole spectrum of dimensions

in this and other network models. In the sense of the defini- 10
tions introduced above, the network behaves very close to

one dimensional. Note that priori there has not been an 0

obvious Euclidian space containing the structure from which 107 10 100 1000 100c

to calculate the dimensiomg, . In the following we consider L

dynamical processes occurring in KE networks and interpret FIG. 4. Average(In(u Y)). The dashed line corresponds to a
them in the light of the dimension study. function ~L 1. Symbols and averaging as in Fig. 2.
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networks of the BaralsaAlbert type [20]. For such net-
works, we have checketfor q=0,1,2) that the moments
(u9) do not scale as a power law bf but instead 4— o in

this case. Thus, the different behavior is consistent with the
different dimensionality.

0.8

0.6 V. CONCLUSIONS

We have introduced definitions of dimensions useful for
the study of complex networks. In particular, we have calcu-
lated the capacity, information, and correlation dimension of

0.4

0.2 a type of hierarchically structured scale-free network. We
have shown that some dynamical properties of this class of
networks can be understood in the light of the dimension

¥s 06 07 08 09 1 analysis. One should be warned, however, that dimension is
p only one of the many characteristics of complex networks.

From the study of phase transitions on fractg4] it is
known that other numbers such as connectivity or lacunarity
should also be specified to fully determine the behavior of

The average values have been obtained from 1000 percolation rgynamlc phenomena OCC“”"TQ on them. We expec_:t the same
alizations in ten different networks. Network siZé¢=10 000 to apply to networks. Quantities such as clustering or be-

(circles, 20000 (squarel 50 000 (triangle up, 100 000(triangle twee_nness' thether with dimensions, may play a role in de-
down), 200 000(diamonds. termining universality classes for processes on networks

[22]. Finally, it would be worth to search for other complex
networks displaying finite dimension spectra. We think that
possible candidates would be those with an underlying
“regular” topology [6,23].

FIG. 5. Average relative size of the largest clustén site per-
colation for different occupation probabilitigsin m=3 KE net-
works. The inset shows a finite-size scaliag F((1— p)N°39).

lation in one-dimensional regular lattices. In addition we
have found thatae=0.35 for m=3, while «=0.21 form
=5, suggesting that is a decreasing function of the aver-
age degre€k)=2m. These numbers are in good agreement
with site percolation in one-dimensional lattices with radius
of interactionz. There one can show that=z"1. We acknowledge financial support from MCyBpain

It is worth noting that this result is in contrast with the and FEDER (EU) through Project Nos. CONOCE
zero percolation threshold fourfd9] in random scale-free  BFM2000-1108 and BFM2002-04474-C02-01.
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